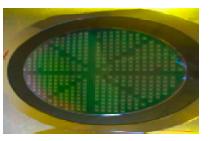

WaferBOND® HT-10.10 Temporary Bonding Material

WaferBOND® HT-10.10 temporary bonding material enables back-end-of-line (BEOL) processing of ultrathin wafers with standard semiconductor equipment.

WaferBOND® HT-10.10 material is an organic coating for temporary wafer bonding for MEMS and 3-D wafer-level packaging applications. WaferBOND® HT-10.10 material enables thinning and backside standard lithographic processing through effective bonding and subsequent thermal debonding. The material has been developed and tested especially for use in through-silicon via creation, finishing, and redistribution layer completion in processes up to 220°C.

BENEFITS

- Process ultrathin wafers using standard BEOL techniques and tooling
- Create interconnects before or after thinning
- Protect devices from chemical degradation
- Remove adhesive from device wafer completely



70-µm-thick wafer, 1:1-aspect-ratio vias, copper redistribution layer

Resistance to Process Chemicals

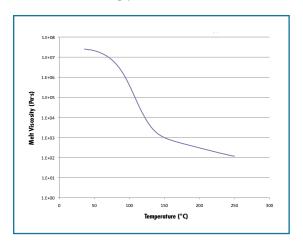
Chemistry	Bath Temp.	Time			
Acetone	25°C	25 min			
NMP	85°C	60 min			
6N HCI	60°C	30 min			
15% H ₂ O ₂	60°C	40 min			
30% NH ₄ OH	25°C	30 min			
10% KI in H ₂ O	25°C	20 min			
Ethanol	25°C	5 min			
Methanol	25°C	5 min			
Isopropanol	25°C	5 min			
Cyclohexanone	25°C	5 min			
Ethyl Lactate	25°C	5 min			
PGMEA	25°C	5 min			
PGME	25°C	5 min			
30% HCI	25°C	90 min			
70% HNO ₃	25°C	60 min			
Note: An HMDS pretreatment is recommended for the following exposure recipes:					
0.26N TMAH	60°C	30 min			
30% KOH	85°C	60 min			

Contact Brewer Science for process recommendations for different coating thicknesses.

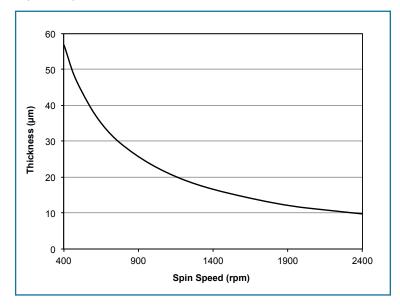
Thinned device wafer may be mounted on film frame for dicing and pick-and-place handling.

www.brewerscience.com

PROCESSING


Best known methods (200-mm wafers)

	20-µm process	50-µm process				
Coat						
Spin speed	1200 rpm	450 rpm				
Acceleration	3000 rpm/s	500 rpm/s				
Time	30 s	35 s				
Bake						
Bake 1	120°C, 3 min	120°C, 5 min				
Bake 2	180°C, 4 min	180°C, 6 min				
Bond						
Temperature	180°C	170°C				
Force	3500 N	2100 N				
Time	2 min	1 min				
Vacuum	≤ 5 mbar	≤ 5 mbar				


Storage Conditions

Store at room temperature (16 to 26°C)

WaferBOND® HT-10.10 Material Melt Rheology

Spin Speed Curve

Thermal Slide Debonding

Temperature: 190°C Max Rate: 3 mm/s Max Force: 3 lb

Thin Wafer Cleaning Process

Clean – Central or Spray Dispense					
Step	Speed (rpm)	Acceleration (rmp/s)	Time (s)	Dispense	
1	1000	3000	10	WBR	
2	1000	3000	10	_	
3 Repeat steps 1 & 2 five to thirteen times*					
4	1000	3000	20	IPA	
5	1000	3000	30	_	

*Dependent on thickness and equipment

WBR – WaferBOND® Remover material IPA – Isopropyl alcohol

© 2017 Brewer Science, Inc.

All statements, technical information, and recommendations contained herein are based on tests we believe to be accurate, but the accuracy or completeness thereof is not guaranteed and the following is made in lieu of warranty expressed or implied. Neither the seller nor the manufacturer shall be liable for any injury, loss, or damage, direct or consequential, arising from the use or inability to use the product. Before using, user shall determine the suitability of the product for his intended use, and user assumes all risk and liability whatsoever in connection therewith. No statement or recommendation contained herein shall have any force or effect unless in an agreement signed by officers of the seller and manufacturer.

Effective Date: 1/9/2017

www.brewerscience.com