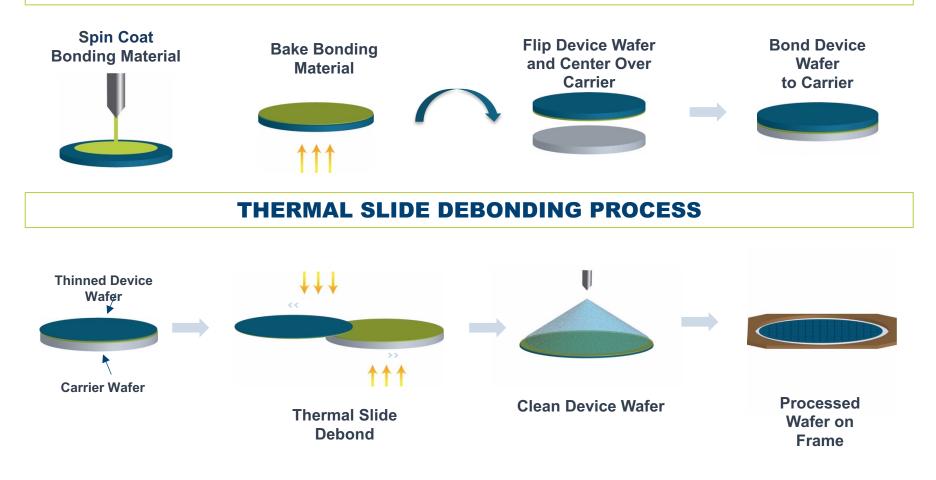


Wax Replacement with Temporary Wafer Bonding Technology

BrewerBOND® 230 Material

© 2022 Brewer Science, Inc.


The New Standard In Thermal Slide Technology

- Lower cost of ownership through increased throughput, decreased rework, wider process capabilities, and maximized device yield.
- Improved via uniformity and increased die yield across substrate.
- Rheology designed for maximum device support during extreme thermal backside processing.
- Ability to safely handle thinned device wafers through debonding and cleaning.

Thermal Slide Debonding Technology

TEMPORARY BONDING PROCESS

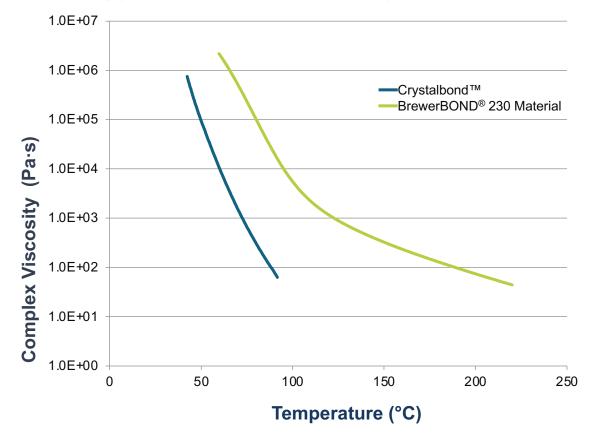
Competitive Advantages

Properties	Wax	BrewerBOND® 230 Material
Thickness Range	~ 10 µm - 35 µm	20 μm – 110 μm
Coating Throughput	Multi-coat process	Single-coat process
Bonding Temperature Range	95°C - 110°C	100°C-130°C
Debonding Temperature Range	95°C - 110°C	150°C – 200°C
Thermal Stability Temperature Range	< 120°C	≤ 250°C

- Brewer Science's temporary bonding materials are specifically designed for thermal slide processes enabling downstream thermal stability ≤ 200°C.
- Ease of use in process, ultimate manufacturing quality, and leading-edge technical support.
- State-of-the-art developmental design offering process support of device wafers through downstream processing.
- Compatible with downstream vacuum process steps.

Known Application Attributes

Focus of This Work—Thermal Slide Debond:


• Low-temperature, low-stress thermal slide debonding using GaAs, SiC, epoxy mold compound, silicon, GaN, glass, and sapphire

Bonding Material & Use Range	Material Type
BrewerBOND [®] 230	High-Flow,
(100°C – 250°C)	Non-Polar Resin Blend

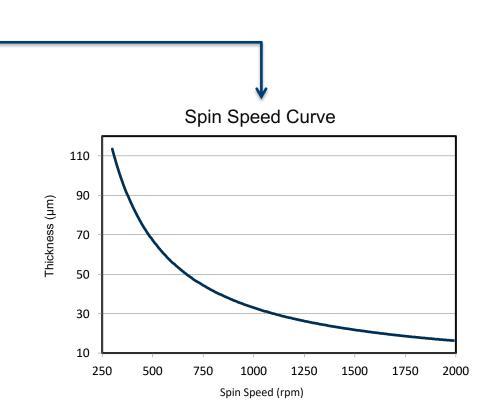
Material Attributes

Rheology | Complex Viscosity Comparison

Characterization:

- Viscosity (Brookfield) at 25°C: BrewerBOND[®] 230 Material: ~ 2600 cP
- T_d (TGA*)

 *IPC-TM-650 2.4.24.6 (2% loss)
 BrewerBOND[®] 230 Material: ~285°C
- T_g (DSC) BrewerBOND[®] 230 Material: ~25°C



Spin Speed Curves and Material Bakes

Spin Coating & Baking

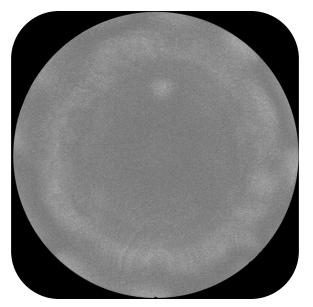
Coating Parameters		
Dispense	Static on wafer center	
Spin Speed	See spin speed curve below	
Acceleration	500 rpm/s	
Spin Time	30 s	

Thisland	Proximity Bakes at 0.5 mm			
Thickness	Bake 1	Bake 2	Bake 3	
20 µm	120°C, 1 min	220°C, 2 min	N/A	
50 µm	80°C, 3 min	180°C, 3 min	220°C, 3 min	
100 µm	80°C, 5 min	180°C, 5 min	220°C, 10 min	

Note: Spin speed curve was generated on 200-mm wafers and utilized a 5-mm edge exclusion.

Bond and Debond | Processing Windows

Bonding Process	BrewerBOND [®] 230 Material
Bond Temperature	100°C – 130°C
Bond Time	2 min
Vacuum	≤ 5 mbar
Force	500 N – 2500 N


Thermal Slide Debonding Process	BrewerBOND [®] 230 Material
Temperature	150°C -190°C
Force	2-4 lbf
Speed	2-3 mm/s

Note: Parameters may need optimization depending on the topography and structure of the device wafers.

CSAM Images After Heat Treatment

BrewerBOND[®] 230 material

200°C for 60 minutes at in a N₂ oven

BrewerBOND[®] 230 material showed no signs of voiding after thermal processing.

Summary

- Low-stress material for high-stress device applications
- Broader thickness range in a single coat: up to ~110 μm
- Cleans faster and with less solvent than historic materials
- Broad temperature range for thermal separation: 150°C to 200°C
- Survives standard backend-of-line thermal processing

Where innovation takes flight!^{ss}

THANK YOU

in y O f

