

IoT – the Internet Of T...emperature

Margit Harting (CEO)

IoThings: a non-local control and feedback loop

Internet:

global communications backbone providing connectivity:

- from a "THING" to "somewhere else"
- and back to
- the "THING"

gateways connect to the internet by information exchange

- WLAN router
- 3G, 4G, 5G modem
- satellite
- laptop or mobile phone
- RFID reader

IoT features:

- multiple gateways
- internet its own internal gateways
- communication is transparent above first few gateway levels

edge devices connect to the THING

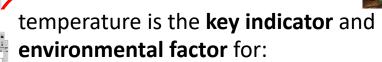
edge device may be:

- part of the Thing
- an add-on, or
- a separate unit.

edge device = sensor direct
edge device = and/or an + connection
actuator to a gateway

THINGS: assets, equipment and even living things

the provides the opportunities for:


- assets being maintained more effectively
- equipment doing something in an optimal fashion

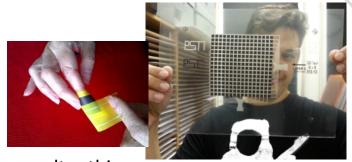
the internet of temperature

as the most often measured physical quantity temperature is needed anywhere and everywhere

- human and animal health
- food safety
- safe and productive environment
- process efficiency and safety
- product stability and lifetime
 - manufacturing reliability

the most often measured quantity: temperature

PST's contribution: PRINTED SENSORS


why printed temperature sensors?

slow

high power

self-heating

- ultra thin
- flexible and conformable
- ultra fast

state of the

ultra low power

art sensing

- no self-heating
- very wide temperature range

PST's temperature sensing solutions allow you to offer products and services fulfilling requirements beyond the conventional

printed sensors: unique form factor

customized size

 from the diameter of bead thermistors

to the size of an airplane wing

customized shape

from rectangular to irregular

 to temperature sensor arrays

PST's temperature sensors: wide temperature range

wide temperature range

 to a hazardous environment up to 800° C
 printed on polyimide

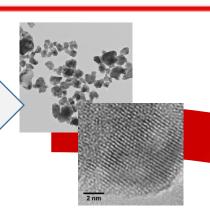
or even higher temperature substrates

 to no environment at all down to -267°C

printed sensors: conformable and flexible

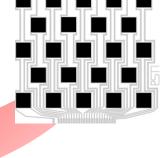
conformable and flexible

from flat to curved and conformable

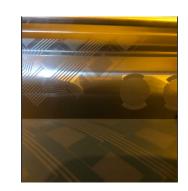


to fully flexible




technology base: nano-structured silicon

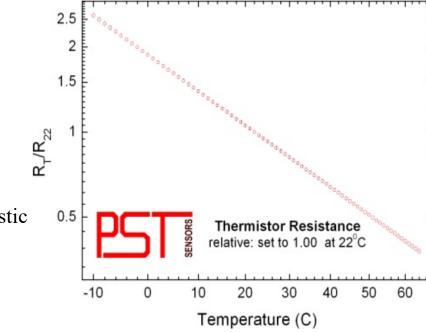
ink formulation



device design

printing on any substrate

now also R2R production of temperature sensors



unique temperature sensors

PST's printed temperature sensors are thermistors

- negative temperature coefficient (NTC) thermistors,
- universal (perfect Arrhenius) characteristic for its electrical resistance in the environmental temperature range
- one point calibration is sufficient
- they are also varistors

universal temperature characteristic relative to the resistance at 22°C ($R_T/R_{22} = 1.00$ at 22°C)

technical data

operating temperature: -267°C to 800°C
 resistance value at 25°C: 10 kΩ - 100 MΩ

tolerance on R₂₅-value: ±10%
beta-value: 2300 K

tolerance on beta-value: ±5%

typical precision: ± 0.1 °C

temperature sensitivity: 2.5 %

operating voltage: 1 mV to 200 V

power consumption: $nW \text{ to } \mu W$

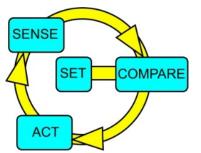
measurement speed: 100Hz

substrate: everything that can be printed on

minimum size : minimum: 1 x 1 mm²

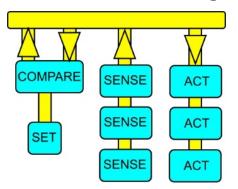
maximum size: limited by printing equipment

• sensor thickness: $> 20 \mu m$

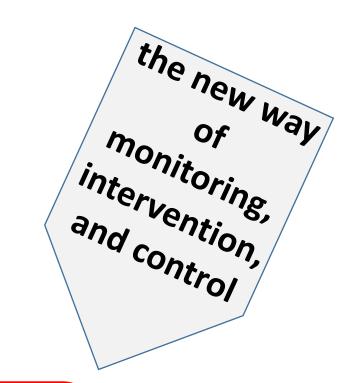

• device thickness: depending on substrate

enables energy harvesting solutions

new frontiers in temperature sensing



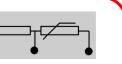
traditional control loop:



compares single sequential data and performs a single action (sensors, actuator and digital/anolog algorithm in one unit (e.g PID controller))

the Internet of Things:

compares **correlated sets of data** and performs multiple actions


IoT and printed sensor electronics:

pushes the boundaries for monitoring, intervention and control

active-T Sensors

- fully printed analog circuit
- series bridge
- the output voltage tracks the temperature


Chip on Sensor Hybrid CoSH

- hybrid electronics
- digital serial temperature sensor
- temperature without measuring resistance or voltage

Kushushu:

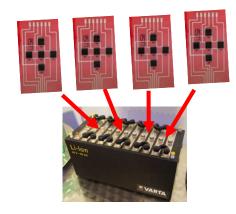
IoT edge device - temperature passive RAIN RFID Gen 2 sensor tag

The Pod:

ToT BLE edge device temperature, humidity, activity

margit.harting@pstsensors.com

APPLICATIONS - ELECTRIC VEHICLES


NEED

efficiency:

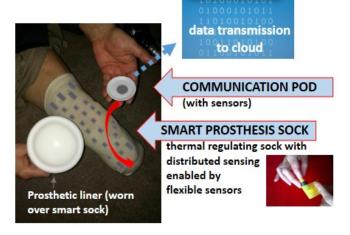
- faster charging
- better load management safety: prevent thermal runaway
- detect hot-spots
- switch out defective cells

SOLUTION

- ultrathin sensor arrays
- temperature and pressure monitoring
- work inside and outside cell chemistry
- time dependent 3D reconstruction of temperature/pressure profiles from 2D maps

APPLICATIONS – REMOTE AMPUTEE MONITORING

PROBLEM AND NEED


prosthesis wear causes skin diseases in
 75% of lower limb amputees

- prevention relies on daily self- inspection
- amputees can't wear a prosthesis
- immobile amputees miss social and vocational activities

e.g. United Kingdom:
UK's 75,000 lower limb amputees cost the
National Health Service £117M only for
ulcer treatment

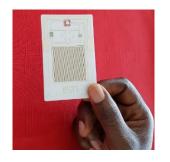
SOLUTION

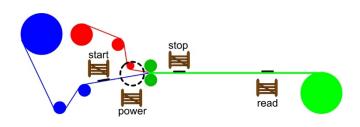
COMPUTING

- ultrathin and flexible sensor arrays
- unbiased, evidence based information
- temperature, humidity, pressure and activity
- anonymous and secure data format
- continuous monitoring of physiological parameter → prevalence reduced to 15%

APPLICATIONS – CONVERSION LINE PROCESS

MONITORING


 in conversion lines producing paper products the temperature is not sufficiently known



consequence: large amount of product is rejected

SOLUTION

- ultrafast and ultrathin temperature sensors
- high sampling rate allows temperature monitoring when probe travelling with the product

- edge devices with UHF RAIN Gen 2 (860 960 MHz)
- gateway devices: RFID readers, embedded computers
- monitoring: time temperature profile
- enabling intervention before production fails
- control provided by on-site software

PST Sensors is originally a South African company...

PST Sensors (pty) Ltd 102, Gateway Park, Berkley Road Ndabeni, Cape Town 7405 South Africa

THANK YOU FOR YOUR ATTENTION

... but now we are also in the UK

PST Sensors Europe Ltd

NETPark, Thomas Wright Way Sedgefield TS21 3FD United Kingdom

