Brewer Science

Newsroom

Show Me All News Blog Ebooks Videos Press Releases Events

Related Articles

Developer options for spin-on photosensitive materials

Developing photosensitive film layers to produce features of targeted sizes is a critical process step within any photolithography application. Application engineers have created several processes for performing this step with tank immersion (that is, a bath) and/or several adaptations of spin developing a single wafer to make patterns of features based on film areas of…

  Lithography Click Here to Read More

How does Brewer Science help grow STEM?

As part of the manufacturing and innovation industry, Brewer Science relies on the growth of STEM education, jobs, and overall interest in the subjects to maintain our business model in the U.S. Our president and founder, Dr. Terry Brewer, addresses three main initiatives to help ensure the growth of STEM: Expand STEM opportunities in the…

  Science, Math, STEM, Technology, Engineering, company Click Here to Read More

Thin-wafer handling: Spin chuck designs for thinned substrates

Thin-wafer processing trends Several spin-coating process applications require the ability to uniformly coat, develop, and/or rinse (clean) thinned and fragile substrates. Safely handling these fragile materials is paramount and requires specially designed spin chucks and thin-wafer handling techniques. The substrates are made of a wide array of materials, and some of the more popular ones…

  Wafer-Level packaging, thin wafer handling, 3D packaging, spin coat, LED manufacturing Click Here to Read More

Thermal slide debonding for temporary bonding processes (Part 3 of 3)

Thermal slide debonding represents the next significant advancement in obtaining high-yield thin wafer results. Initial detection of anomalies and cracks usually occurs during debonding; however, many causes for this damage originate during upstream bonding material coating, curing, bonding, and thinning processes. Moreover, only thermal separation tools that are highly precise and highly accurate will consistently…

  Wafer-Level packaging, debonder, thin wafer handling, spincoat, 3D packaging Click Here to Read More

Thermal slide debonding for temporary bonding processes (Part 2 of 3)

In addition to precisely controlling application of the materials that enable wafer bonding, a solvent-enriched sealed spin chamber contributes to process integrity. One of the most critical variables in achieving optimal uniformities at the desired target thickness is airflow dynamics. Ideal conditions are created in a sealed chamber with a prewet solvent nozzle, a backside…

  Wafer-Level packaging Click Here to Read More

Finding Nano: Where Will DSA Lead Us Next?

In its constant quest to innovate, Brewer Science is continually on the cutting edge of what is next. We are currently combining directed self-assembly (DSA) and lithography to achieve sub–10 nm nanostructures. DSA uses block copolymers to generate arrays of self-assembled shapes such as lines or cylinders; the spatial arrangements of the resulting features can…

  Arkema, Directed Self-Assembly, Lithography, nanotechnology, DSA Click Here to Read More

Brewer Science technology, forecasts highlighted in Chip Scale Review

In recognition of its progress with temporary bonding and thin wafer handling, Brewer Science was featured in the November/December issue of Chip Scale Review. The feature discusses the company’s use of wafer-level packaging (WLP) technologies in semiconductor segments, including fan-out WLP (FOWLP); fan-in wafer-level chip-scale package (FI-WLCSP); 3-D FOWLP; 2.5-D integration with interposer technology; and…

  FOWLP, debonding materials, Wafer-Level packaging, Advanced Packaging Click Here to Read More

Applications within the Internet of Things Part 2

The Internet of Things (IoT) includes a number of different applications throughout a wide assortment of industries. In our first breakdown of applications within the IoT, we discussed how Brewer Science creates materials for sensors and MEMS devices essential to the development of IoT applications. Now we’ll take a look at our involvement with control…

  Internet of Things, other, Energy Management, Medical and Health-Care Systems, Transportation, Building and Home Automation, IofT Click Here to Read More

Applications within the Internet of Things, Part 1

The Internet of Things (IoT) has made substantial strides since first being envisioned in 1999, having moved beyond machine-to-machine communications, toward impacting a variety of industries with “smart” devices. Nearly 26 billion devices will be connected to the IoT by 2020, according to technology research firm Gartner, Inc., and the majority of these devices fit…

  new business developement, infrastructure management, smart technology, media, environmental monitoring, Internet of Things Click Here to Read More

Adhesives: Ultrathin Wafer Production's Little Giant

Anyone who has worked in a fancy restaurant can tell you that the small details make the biggest impact. The food has to be perfect, yes. But even a simple thing such as the way the napkins are folded or how often your water is refilled can make a lasting impression on the patrons. Oftentimes,…

  BrewerBOND, Corning, Adhesives Click Here to Read More
Top